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Agenda

● Expectations setting
● Introduction to virtualization
● Introduction to memory management
● Analysis of 5 memory related assembly 

instructions
– How it works on real hardware
– Hypervisor's emulation



Expectations setting
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KVM Architecture – Not today. We will dive all the way in. 

userspace

kernel
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Expectations setting

● This talk is at the level of “assembly” instructions
– The common denominator of all software (BIOS, 

O/S, Java, browser, whatever).
● Virtualization is huge

– We will focus on 5 variants of the X86 “MOV” 
instruction, and try to “fully” understand them.

● The focus is on memory management implications.
● We will spend time refreshing our native O/S knowledge
● The examples are simple and simplified. E.g., 32-bits 

addressing
● Do I promise to tell the whole truth and nothing but the 

truth?
– Not really



Introduction to virtualization
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What do we expect from a Hypervisor (VMM)
● Provide a VM (Virtual Machine), often referred to as Guest

● The Hypervisor emulates a hardware by ALL means
● A VM can run code (“assembly” instructions) just like on 

real  hardware, and it will work just the same.
– What code?

● BIOS, Operating system, applications
● Code that accesses registers, memory, devices
● Code that manages memory (paging system) and 

processes.
● The (emulated) devices read/write to the VM's memory 

(using “DMA”)
● The “Hardware” issues interrupts

● Timing is different from real hardware
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Virtualization techniques

● Para-virtualization (old XEN)

● Trap and Emulate

● (dynamic) Binary translation (old VMWare)

● Hardware assisted
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How does it work
● Efficiency – In practice, most of the time the Hypervisor 

simply lets the guest run on the real CPU and memory, not 
knowing what the guest is doing.

● Access to Registers & memory, function calls, 
calculations, ...

● If the guest is executing an “interesting” assembly instruction 
then the hardware traps it, and the hypervisor emulates the 
instruction carefully

● Examples of emulated instructions
– Access to “hardware device” (MMIO / PIO)
– Special instructions (CPUID, LGDT)
– Access to interesting “registers” that have side effects
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KVM

VM

How does it work (cont.)
● Hardware support for virtualization

● “luckily” modern x86 hardware is virtualizable, in the 
sense that every assembly instruction that the hypervisor 
needs to emulate can be trapped.

Init “Hardware”

Interesting instructionEmulate

VMenter

VMenter

● Fully Virtualizable x86 hardware became available in 2005 
(Pentium-4 662 and 672)

● VMCS – Virtual Machine Control Structure
● VMenter/VMexit control and status

TrapVMexit
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A Linux Host

Running standard Linux processes, and the KVM kernel module

QEMU (a std host process)

KVM Host & Guests (memory wise)

Linux Guest

With 2G memory
.  .  .

QEMU (a std host process)

Linux Guest

With 1G memory
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Add to the confusion (side notes)
● With KVM, the Hypervisor itself is implemented mostly in 

QEMU, which is a standard Linux-host process (that runs in 
user-space).

● KVM is also the name of a kernel module (not just the 
technology). 

● The KVM-module runs code that requires kernel 
permissions (interrupts, memory management, ...)

● A few performance critical devices are implemented in the 
kernel (Vhost)

● The guest's “physical memory” is a standard Linux-host 
memory which is part of QEMU's data structures
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Add to the confusion (cont.)

● QEMU, just like any other standard (userspace) application
● Is subject to scheduling (on the host) – it can be stopped 

and/or moved to a different physical CPU
● Is subject to paging, its memory (that mostly comprises of 

the VM's memory) can be paged out to swap.
● Can access host resources such as files and network in 

order to serve the guest

● All of the host facing activities have no effect on the VM's 
state. The guest's correctness is not affected by the host-
side events

● We will ignore it from now on.



Let's examine one of the most popular 
instructions

Writing to a general purpose register

Mov EAX, EDX
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3 memory levels and how they are accessed

CPU

Memory: Registers
MOV EAX, 1013
MOV CR3, 512000

External storage

Memory: Hard Disk Drive
(The driver prepares a Scatter-Gather list in memory)
MOV [0xFFFF00A0], 3 // MMIO to activate the write

Motherboard

Memory: RAM
MOV [3000], 3
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Example 1: Mov EAX, EDX

● Explanation
● EAX := EDX
● Both EAX and EDX are memory registers (in the CPU)

● What can go wrong?
● Nothing
● Well, almost. The instruction itself can reside in memory 

that is not mapped. We will ignore it.

● What will happen (when the CPU is executing this guest's 
instruction).

● The instruction is executed (as is, by the CPU)
● The CPU will also advance the IP to the next instruction
● KVM is unaware of it



Let's examine another popular instructions
Writing to memory

Mov [10000], EDX
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A short introduction to virtual memory

● Note: Virtual memory has nothing to do with hypervisor's 
virtualization. It works on the native machine

● Note that Virtualaddr 10000 of different processes are 
distinct.
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A short introduction to virtual memory (cont.)
● The MMU (inside the CPU) translates every Virtual (Linear) 

address to Physical address.

10 bits 12 bits10 bits

Page Directory
(1024 entries)

10 bits

PDE (PT Paddr)

CR3 Page Table

PTE (page Paddr)

Page Table
(1024 entries)

.

.

.

Page
4k bytes

Data (at Paddr)

Page

.

.

.

Vaddr =
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A short introduction to virtual memory (cont.)

● A PDE/PTE also contains some bits for present, write-
able, ...

● An attempt to access a non-present page triggers a page 
fault

● Where do these mysterious page-table reside, and how does 
the O/S update them?

● A page-table is a standard 4k data page in memory
● It plays the role of a PT only when it is used during the 

translation of a virtual address to physical address
● A page table can be written just like any other memory 

page. Naturally, through a virtual address.
● The O/S allocates PTs and updates their content

● Performance - A hardware cache (TLB) is used to accelerate 
the translation from Vaddr to Paddr



How hypervisors implement the virtualization 
of “virtual memory”
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Memory virtualization
● There are several techniques to virtualize memory-access

1. Emulate every instruction
– This is what you get when running QEMU (in 

usermode), without the kernel's assistance that the 
KVM-module provides.

– Can be accelerated using binary translation
2. Shadow page tables

– Involves a KVM kernel module
– This technique is still in use for Nested-VM

3. Using the hardware's EPT/NPT
● Intel: Extended Page Tables
● AMD: Nested Page Tables

– KVM and other hypervisors use the hardware's 
support
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Guest's physical memory vs. Physical memory

4K Page

4K Page

Guest's physical memory

4K Page

4K Page

Actual physical memory

4K Page

4K Page

Swap
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Shadow page tables
● The Guest O/S is unaware of the fact that its “physical” 

memory is virtualized, and continues to manage its page-
tables (upon Guest's memory allocation, swapping, attempts 
to write on the Zero-page, etc)

● KVM is maintaining a parallel (shadow) set of page-tables 
that implements the actual mapping to physical memory

● I.e., the real CPU's CR3 points to the shadow PD
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Shadow page tables (cont.)

Shadow
Page Directory

PDE

Actual
CPU's
CR3

Shadow
Page Table

PTE

Guest's
Page

Guest
Page Directory

PDE

Guest
CPU's
CR3

Guest
Page Table

PTE
GPhys

Phys
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Shadow page tables (cont.)

● Past hypervisors used to run using the shadow page tables
● There were too many VM exits (accessed & present bits), 

and up to 25 mem accesses to complete

● With EPT (NPT), hardware support, the number of exits was 
reduced dramatically
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Hardware support - EPT / NPT

GPaddr =

10 bits 12 bits10 bits

Page Directory

10 bits

PDE (PT Paddr)

Guest
CR3

Page Table

PTE (page Paddr)

Page
4k bytes

Data

GVaddr =

Level-4
PT

EPTE

9 bits 9 bits 9 bits 9 bits

Level-3
PT

EPTE

Level-2
PT

EPTE

Level-1
PT

EPTE

Second Level Address Translation (64 bits)

EPT Base
Pointer
(in VMCS)
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Hardware support - EPT / NPT (cont.)
● The MMU support for calculating the Gphys address works 

just the same as on bare metal.

● The calculated Gphys goes through another level of 
translation in hardware (SLAT)

● Once again these EPT page tables reside in standard 
memory (naturaly, host mem)

● The TLB can cache the full translation – from Gvirt to 
physical address

● The main advantages
● There is no exit to the hypervisor due to pure guest's 

page-faults.
● Guest context switch that would trigger a shadow PTs 

recalculation (had shadow PTs been used) has no effect 
on the EPT tables.



Writing to memory
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Example 2: Mov [addr], EDX

● Explanation
● [addr] is the content of a memory
● “addr” is a virtual address (guest wise)

● What can get complicated?
● Guest PF - “addr” is not mapped or write-protected 

(according to the guest's PTE bits)
– Let the guest handle it.

● Shadow Pts issues
– “addr” is inside a guest PT (that has a shadow PT)

● Guest-PTs can be write-protected in order to track 
changes, and update their shadow accordingly

● “addr” is not plain memory, it is used to access a (guest) 
device (MMIO)



31

(SKIP?) Example 2 (cont.): Mov [addr], EDX

● Say that shadow page tables are used, and that it is the first 
time the guest is accessing this page.

● Let's discuss a guest PF due to PDE
● The MMU starts with CR3 (naturally the real one), uses 

the first 10 bits from the linear (virtual address) to locate 
the PDE (in the shadow PD), and since the PDE's 
Present bit is 0 issues a PF.

● The hardware generates a "PF exception" vmexit (to 
KVM). Prior to H/W support it was a standard PF.

● KVM notices that the guest's PDE's Present bit is 0, so it 
emulates a hardware PF for the guest, and let it run.

● The guest's MM will find/create its PT, puts its address in 
the (guest's) PDE, set the present bit in the PDE
– Note that in order for the guest to write on the PD it 

must be mapped (See next page)
● The IP is set to rerun the instruction, and it is rerun.
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Shadow PTs – Guest updates “New PDE”

Shadow PD

PDE (PT Paddr)

Actual
CPU's
CR3

Shadow PT

PTE (page Paddr)

Guest PD

PDE (PT Paddr)

Guest
CPU's
CR3

Guest
Page Table

PTE (page Paddr)

New PDE

New Guest PT

The guest is
updating its new
PDE
A guest PTE must
point to the PD (the
PD as a data page).
A shadow PTE also
points to the PD.

The Hypervisor needs
to track changes to
guest PTEs.

Shadow PDE's are
Lazy evaluated



Writing to MMIO (Memory Mapped IO)
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Example 3 - MMIO: Mov [addr], EDX

● Explanation
● “addr” is a virtual address (guest wise), whose GPhys 

address is not memory. The guest uses it to access a 
device

● A hardware device (such as an IDE disk) specifies what will 
happen when writing a given value to an address in its MMIO 
range.

● As far as the Guest is concerned, KVM needs to accurately 
emulate the behavior of a real device.

● KVM will often “cheat” and implement the disk drive storage 
using a QCOW/raw file on the disk, or on the network.
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Example 3 - MMIO: (cont.)

● Reading from disk to memory
● Guest O/S prepares a description of the task

– (Scatter Gather) List of disk-addr, mem-addr, length
● Guest O/S writes a pointer to the list to the device's 

MMIO address
● KVM has to emulate the storage device

– Read the correct data from the guest's disk storage 
(probably a host QCOW file) into the guest's memory.

● Note that the guest's physical memory is a virtual 
memory of the QEMU (host) process

– When done, emulate the hardware interrupt that such 
drive would generate upon completion.
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In what sense KVM is cool

● In the previous example (MMIO)
● The hypervisor has to read from the guest's “disk” into 

actual memory
● This is not a simple task.

– There are many types of storage implementations, 
such as QCOW/raw files, SCSI/SATA, ISCSI, NAS, ...

– The I/O of different VMs need to be scheduled and the 
disk access ordering should be optimized

– Sometimes you need bounce-buffers, and sometimes 
you can use DMA to access the guest's memory.

– While waiting for I/O the CPU can run something else.
● KVM uses the host's services, and lets the host take care 

of all this.
– KVM immediately benefits from every Linux 

optimization (scheduler, NUMA, THP, I/O, ...)
– KVM immediately supports every hardware that is 

added to Linux



Miscellaneous topics



38

Example 4 – Interrupt Injection to Guest
● Real hardware implementation of interrupts

● According to the interrupt type
– Checks the interrupt-enabled and other conditions

● Save the current context (IP, flags, SP, ...) in the stack
● Move the IP to the interrupt handler's code (can be found 

in memory, in the IDT – Interrupt Descriptor Table)
● Upon IRET, restore the saved context from the stack

● KVM emulates this behavior when it decides to inject an 
interrupt to the guest

● VT-x/AMD-V provide hardware support for interrupts injection
● The Hypervisor can inject interrupts (set the VMCS's VM-

entry before VMRESUME). H/W will take care of the 
guest's masks & priorities, and the actual injection.
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How does a VM start

● Just like on real hardware (how else)

● QEMU puts the BIOS (default: SEABIOS) in the guest's 
memory (mapped at the end of the 4G)

● The guest's BSP's (Bootstrap Processor) state is initialized – 
registers, etc.

● The guest's APs (Application Processors) are uninitialized
● Later the BSP will send IPIs to the Aps, and they will 

wake up and start running their code

● The BSP's IP is set to address 0xFFFFFFF0, and it starts 
running (assembly instructions)

● The guest BIOS will scan the “hardware devices”, build 
tables, ..., load and run the O/S


